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ABSTRACT

The study of dolphin cognition involves intensive research of ani-
mal vocalizations. Marine mammalogists commonly study a specific
sound type known as the whistle found in dolphin communication.
However, one of the main problems arises from noisy underwater
environments. Often waves and splash noises will partially distort
the whistle making analysis or extraction difficult. Another problem
is discovering fundamental units that allow research of the compo-
sition of whistles. We propose a method for whistle extraction from
noisy underwater recordings using a probabilistic approach. Fur-
thermore, we investigate discovery algorithms for fundamental units
using a mixture of hidden Markov models. We evaluate our findings
with a marine mammalogist on data collected in the field. Further-
more, we have evidence that our algorithms enable researchers to
form hypotheses about the composition of whistles.

Index Terms— Probabilistic Modeling, Bio Acoustics, Marine
Mammals, Dolphin Behavior

1. INTRODUCTION

One part of marine mammalogy is the study of dolphin cognition and
communication. Communication and vocalizations of animals can
give valuable insight into the social structure of groups of animals.
One of the research goals in dolphin behavior research is the asso-
ciation of behavior with vocalizations by correlating sound with ob-
served social clues from video. Therefore, researchers collect large
video and audio databases in the field containing long-term, contin-
uous observations of the complex social behavior of dolphins and
their communications. While the physical structure and the produc-
tion of dolphin vocalizations is known, there is still the potential for
unknown patterns and structures in their communication. Herzing
[1] provides an overview of current tools and techniques in aquatic
mammal research. For example, researchers know that dolphins use
frequency modulated whistles to identify each other (Figure 1).

One question is if there are fundamental units in these whistles
and how these units occur in context. Currently researchers evaluate
such patterns by manual measurements of magnitudes in frequency
space and by visual inspection. One common problem is that whis-
tles can be occluded by other underwater noise making extraction
even harder. Despite recent attempts to automate the exploration
process and develop scores of similarity, current analysis of dolphin
whistles is still based on visual inspection of a spectrogram. Fur-
thermore, to our knowledge, research on dolphin whistles focuses
on clustering or detecting whole whistles. However, the composition
of dolphin whistles and combinatoric analysis of these can help re-
searchers to understand how whistles change in a group of dolphins
and how parts of whistles are reused.
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Fig. 1. Top: A dolphin whistle occluded by underwater noise. Bot-
tom: The dotted red line shows a desired trace or contour of the
whistle.

We present a system that automates parts of the exploration ef-
fort in dolphin communication using techniques from speech recog-
nition. Our system uses a probabilistic filter to extract a whistle from
a spectrogram. We also implement a novel pattern discovery algo-
rithm based on mixtures of hidden Markov models that searches for
fundamental units in a whistle database. We evaluate our findings on
a database of whistles recorded from spotted dolphins in the field by
marine mammalogists.

2. RELATED WORK

A survey of algorithmic methods used in detection and analysis of
underwater acoustic signals by Lampert et al. [2] identified the three
main areas of concentration to include image processing, neural net-
works, and statistical models. Their evaluation was based on com-
parison of methods according to a range of criteria. Those crite-
ria applicable to dolphin whistle detection include: handling of high
signal-to-noise ratios, noise variation, whistle shape variability (with
no a priori assumption), multiple whistles, between-whistle prox-
imity/crossing, initial/endpoints of whistles, and computational re-
source use and process time. They conclude that hidden Markov
models are currently the most prevalent, promising methods in re-
search literature for use in cetacean vocalization spectrum analysis.

Recently, Kershenbaum et al. [3] published a method on sim-
ilarity of dolphin whistles using dynamic time warping[4]. They
extract the whistles manually by following the trace of the whistle in
a spectrogram using an interactive tool. We try to ease this process
by extracting or tracing the whistle in the spectrogram automatically.
Our algorithm is a single frequency pitch tracker similar to the for-
mulation by Lee and Ellis [5].

Other work in classification and clustering of dolphin whistles
uses neural networks [6, 7] and clustering based on hidden Markov
models in a K-means framework [8]. Both approaches filter the data
first and use mel-cepstral coefficients or other measurements from
the spectrogram as features. Halkias and Ellis [9] extract the whis-
tle from the spectrogram using a Bayesian approach on each frame.
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Lampert and O’Keefe use Kalman filters for contour track detection
[10]. Shapiro and Wang apply pitch detection designed for human
telephone speech to whale vocalizations [11]. Since most of the fre-
quency bins in a spectrogram do not contain any information about
a dolphin whistle, we use a whistle extraction approach inferring
the frequency of the whistle at every time step, ignoring all other
frequency bands. The result of our filtering is a single frequency
changing over time.

Most discovery algorithms in the literature use distance-based
approaches and approximations or discretization [12, 13, 14, 15, 16].
Our discovery algorithm is based on Smyth’s and Minnen’s work of
learning a mixture of hidden Markov models [17, 18]. Smyth repre-
sents a mixture of hidden Markov models as a single, larger model
[17] and performs estimation of the mixture’s parameters using the
Baum Welch algorithm [19]. The initialization procedure uses ag-
glomerative clustering with the likelihood as a distance metric. The
number of components is estimated using Monte Carlo Cross Valida-
tion on the mixture’s likelihood. Minnen’s greedy mixture learning
algorithm [18] adds components to a mixture until the information
gain does not change. The initialization is based on a neighborhood
estimate using the k-nearest neighbors under Dynamic Time Warp-
ing (DTW) distance. In contrast to Smyth, the mixture is used for
continuous recognition instead of pattern spotting (see Figure 2).

3. A PATTERN DISCOVERY SYSTEM FOR DOLPHIN
WHISTLES

The goal of our pattern discovery system is to extract whistles auto-
matically from a continuous recording and find small patterns shared
among multiple whistles. In that way we can provide visual guidance
for the whistle analysis work of marine mammalogists. An example
of such a visualization is shown in Figure 4.

In the following we describe a probabilistic approach for extrac-
tion of whistles. Furthermore, we describe a clustering algorithm
that is capable of discovering fundamental units in extracted dolphin
whistles.

3.1. Noise-Robust Extraction of Dolphin Whistles

Given a continuous audio stream our algorithm starts by computing
its spectrogram. We refer to a sample x¢ (f) from the spectrogram X
of length T as representing the magnitude of frequency f at time ¢.
Since a whistle is produced by a single oscillator we model a whistle
as a sequence F' = fi...fr with f; representing the frequency of the
whistle at time ¢. Furthermore, dolphins create whistles by pushing
air between two air sacks (so as to avoid bubble noise underwater).
The physics of such a system allow the assumption that there will
be no large jumps in frequency in a continuous whistle. A naive
approach to extraction of a whistle could be to take the maximum
frequency at every sample x;. However, as one can see in Figure
1, ambient underwater noise as produced by waves, splashes and
bubbles will lead to a distorted whistle. We account for the noise by
probabilistically inferring the true, undistorted trace from noisy mea-
surements. We model the measurements from the observed magni-
tudes of the spectrogram as the conditional probability P (x| f). We
compute the measurement probabilities by normalizing each sample
from the spectrogram:

4 (f1)
Palfe) = =5~ ey
Zf):o (i)
This probability model assigns higher probabilities to frequen-
cies with higher magnitude in the spectrogram. We model the state

transition probabilities using a Gaussian centered at the predicted
frequency. We assume a linear motion model of the whistle such that
the predicted frequency is fipredict = v (t—1) fe—1 where v (t—1)
is the change in frequency trace between steps. In other words we
assume Gaussian noise with some chosen variance o2 on the cur-
rent position estimate: N (f¢|vi—1fi—1,0>). Now we can compute
a maximum a posteriori trace of the whistle. We can compute this
trace given our model similarly to the Viterbi algorithm for hidden
Markov model decoding [19]. We compute the likelihood d¢(t) of
frequency f belonging to the trace at time ¢ as:

05(t) = Pladlfi) maxd(t = DN (filor-afis o) @)

Furthermore, we store the maximum frequency up to time ¢ for
backtracking purposes which also results in our velocity estimation:

ptre(t) = argmaxjcy:ﬁf(t—1)N(ft\vt,1ft,1,az) 3)
vi(t) = f—ptrs(t) @

Then we backtrack from the most likely frequency at time 7'
and follow the backtracking pointer backwards in order to extract
the trace.

3.2. Segmented Clustering of Dolphin Whistles

Fig. 2. A loose mixture of hidden Markov models (bold lines) nor-
mally used for word spotting and a connected mixture of Hidden
Markov Models (dashed lines) used for continuous recognition.

In order to discover fundamental units, we cluster sliding win-
dows extracted from a set of extracted whistles. We obtain such
a clustering by learning a finite mixture of hidden Markov models
(see Figure 2). Our algorithm is a variant of Smyth’s algorithm fit to
the purpose of discovering short patterns that occur in sequence. For
a set of extracted whistles we run several iterations of Monte Carlo
Cross Validation. For each fold we extract short sliding windows
from each whistle in the training set. Then we run agglomerative
clustering iteratively using the average linkage between groups of
sliding windows with dynamic time warping distance as the distance
measure. We decided to use dynamic time warping instead of the
likelihood dissimilarity described by Smyth [17] since the patterns
can be very short and there might not be enough data to fit a hid-
den Markov model to just one example. Every iteration reduces the
number of clusters by one. For every number of clusters k greater
than one and smaller than the maximum allowed & we fit one hidden
Markov model per cluster using multiple iterations of Baum-Welch.
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We then combine the resulting models into a loose mixture of hidden
Markov models by rewriting the transition matrices A;...Ay into a
single one with no connection between each of these matrices [17]:

Ay
Amiz = A2
Ag

We re-estimate its parameters by multiple iterations of Baum-
Welch again. We then compute a score for each model using Viterbi
decoding and keep the best overall folds. The main difference be-
tween our algorithm and the one proposed by Smyth is the scoring.
Since our goal is to cluster short patterns in sequence instead of com-
plete time series, the algorithm will overfit the model. Windows con-
taining one pattern in the beginning and a neighboring pattern in the
end might be assigned to different components increasing the model
size. Our new score accounts for this fact by connecting all the end
states of each component to every initial state of each component
resulting in a connected mixture. In this way the evaluation can be
seen as connected speech recognition instead of a loose mixture as
found in word spotting systems. The difference between a loose and
connected mixture is visualized in Figure 2. We then evaluate the
score by decoding complete whistles from the test set using the con-
nected mixture and the token passing algorithm [20] similar to the
score described by Minnen [18]. In that way the window overlap
does not matter since the beginning of the window will be aligned
to an end state and the end of the window to an appropriate start
state. Furthermore, we penalized the resulting likelihood using the
Bayesian information criterion in order to avoid overfitting in gen-
eral [21]. The complete algorithm is shown in Algorithm 1.

Algorithm 1: Segmented Clustering algorithm

Data: A set of whistles W

Result: A mixture of hidden Markov models M

for n folds do

Split W into Wirain and Wiest using MCCV;

Extract sliding windows Vw € Wirqin;

C' := Agglomerative Clustering(Wirqin);

for i < 1to |Wirain| do

C < merge(C) based on DTW;

if : > 1 AND i <= maxy then
Train hmm,; from C; fori € 1...maxy;
Train mixture HMM M from all hmm;;
Connect all end states of M to all initial states;
Evaluate Log-Likelihood LL(M |Wiest);

BIC = LL(M|Wiest) — £log(|Wiest|):

end

end
end
return mixture M with best BIC' score;

Such a mixture can be seen as a pattern code book. In order
to analyze the composition of whistles we decode every whistle us-
ing our continuous mixture. Backtracking then produces a string of
patterns for each whistle.

4. EXPERIMENTS

In order to ground our work we test the discovery system in two
experiments. In the first experiment we explore the capabilities of

)

Fig. 3. A left-right hidden Markov model with 2 skip states as used
in the experiments as the base model for the mixture components.

our algorithm on a set of known whistles and show how we can use
the algorithm’s results to compare whistle similarities. In a second
experiment we run our algorithm on a set of unknown whistles and
evaluate our findings qualitatively with a marine mammalogist. In
the end, we show common failures of our tracing algorithm and de-
scribe in which scenarios it will most likely fail.

All data in our experiments consists of underwater recordings
sampled at 44kH z. We calculate all spectrograms in our experi-
ments using the short term Fourier transform on a sliding window
of 11ms (512 samples) with 2ms (128 samples) skips with a Ham-
ming window applied. We set the variance for the tracing algorithm
to 02 = 1. The sliding window for the discovery algorithm ex-
tracting patterns from the whistles is 80 samples long with a skip of
20 samples. The hidden Markov model topology for each mixture
component is a left-right HMM with five states and two skip states.

4.1. Discovery Performance on Known Whistles

In this small experiment we evaluate the performance of our algo-
rithm. The data set consists of 18 dolphin vocalizations of three dif-
ferent, known whistles. The experiment is inspired by error analysis
for text input devices [22]. For every whistle we compute the strings
for each vocalization using our algorithm. We then compute the Lev-
enshtein distance [23] for each whistle’s examples. In that way we
get an idea of how many insertion, deletion and replacement errors
we find for each whistle. These errors are important for deeper anal-
ysis of the composition of dolphin whistles since too many of these
errors can lead to false claims when analyzing real world data. We
found that the average Levenshtein distance is between zero and two
while the length of the strings varies between three and six. Further-
more, we found that all errors occur at the beginning of the whistle.

4.2. Real World Discovery Experiment

In this experiment we explore the capabilities of our discovery algo-
rithm in a real world setting. We use recordings from field studies of
wild Atlantic spotted dolphins (Stenella frontalis). The marine mam-
malogists extracted the audio from video recordings with behavioral
annotations. While we have no ground truth in this experiment, such
annotated videos can help analyzing our discovery results. For our
discovery experiment we collect 73 examples from the continuous
underwater recordings. We use our whistle tracing algorithm to ex-
tract the contours of the whistles as described in Section 3.1. We
then run the discovery algorithm on our whistles. Our algorithm re-
turned a mixture with eight components. Decoding every whistle
using the mixture resulted in strings of patterns with the length vary-
ing between one and eight patterns. Short strings with one or two
patterns made up approximately 80% of the 73 whistles. We also
found every pattern more than once across whistles. Figure 4 shows
six whistles and the patterns from our experiment.

8299



Fig. 4. Segmented dolphin whistles (best viewed in color): The dot-
ted red line shows the extracted whistle plotted on its spectrogram
(background). The highlights show the responsibility of the mix-
ture’s components obtained by continuous Viterbi decoding. The
letters represent the units { A...F'} found.

We provided such images as well as the strings to the ma-
rine mammalogist for further analysis. Based on our results the
researcher was able to form an hypothesis about the whistle con-
struction. For example from the video annotations we learned that
the strings “ADCAF”, “ACDAF” and “ABCAF” happened during
a mother-calf interaction. As one can see from the strings and
from the spectrograms in Figure 4 on the right side the strings are
very similar, differing by one pattern only. These could potentially
lend support for the hypothesis that part of a mother’s call whistle
becomes part of the calf’s whistle [24]. Furthermore, we found
an interaction between two dolphins where we observed a specific
whistle composed of only one pattern first, followed by another
whistle composed of two patterns. Furthermore, we observed these
whistles across multiple dolphins. Another hypothesis formed by
the mammalogist is that these are generic call whistles that do not
particularly name a dolphin.

4.3. Common Errors During Tracing

During our experiments we found multiple examples of noise lead-
ing to failures during tracing. Often these happen when the whistle
becomes nearly indistinguishable in the spectrogram and the motion
prior is much lower than the magnitude of another frequency. The
obvious example is that low frequency boat noise is louder than the
whistle over a longer period of time. Another example is when a har-
monic is much louder than the actual whistle. Some example traces
with errors are shown in Figure 5.

5. DISCUSSION

The main drawback of our system is the speed and memory used by
the tracing and clustering algorithm. We conducted our experiments
on a workstation with an Intel i7 processor and 16G B of RAM and

Fig. 5. Some failures observed during tracing. Circles indicate error
regions. The dashed lines follow the hypothesized actual trace.

the implementation is based on Java. When running the system from
whistle detection to producing visual results, we observe memory
usages of up to 5G'B with run times of up to one hour. However,
the clustering speed can be improved using a lower bounding ap-
proximation on the dtw distance [25]. Furthermore, re-estimation
speed and memory usage can be improved using Viterbi training or
even faster approximate inference methods such as variational in-
ference. Furthermore, we observed some unintuitive groupings of
patterns, however these were rare and can be identified visually by a
researcher. Most of such errors occur for badly traced whistles. An-
other drawback of our method is that the size of the sliding window
still influences the boundaries of our results. During our experiment
we found that the algorithm is able to produce mixtures that are ca-
pable of recognizing its components across multiple instances of a
whistle.

6. FUTURE WORK

Our experiments gave some technical insights into the performance
of our algorithm on data collected in the field and showed a potential
for the researchers to form an hypothesis about dolphin whistle com-
position and their meaning in a social context. However, we have to
apply our methods to larger data sets in the future. Therefore, we
have to improve the run-time of our algorithm using techniques de-
scribed in Section 5. We also plan to investigate other dolphin vo-
calizations. The quantity of dolphin whistles observed in the wild
is fairly low compared to other sounds such as dolphin burst pulses.
However, these sounds have different characteristics than whistles
and need other algorithms and assumptions for analysis tools. For
example, burst pulses appear as packages of broadband clicks. We
plan to develop methods to perform a similar analysis for other dol-
phin vocalizations. Furthermore, we will work on a method that is
using multiple sizes of sliding windows.

7. CONCLUSION

We presented a novel system for whistle extraction using a proba-
bilistic algorithm and a novel pattern detector algorithm. Instead of
clustering whistles, the algorithm is made for discovery of smaller,
fundamental units in whistles. This approach allows researchers to
not only study the similarity of whistles but also the composition of
whistles. In an experiment with a marine mammalogist, we showed
how the fundamental units and their composition can help to form
hypothesis about social interactions of dolphins. Furthermore, we
evaluated our algorithm on three known whistles and pointed out
typical failures of our tracing algorithm.

8300



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

8. REFERENCES

Denise Herzing, “The currency of cognition: Assessing
tools, techniques, and media for complex behaviour analysis,”
Aquatic Mammals, 2006.

Thomas A. Lampert and Simon E.M. OKeefe, “A survey of
spectrogram track detection algorithms,” Applied Acoustics,
vol. 71, no. 2, pp. 87 — 100, 2010.

Arik Kershenbaum, Laela S. Sayigh, and Vincent M. Janik,
“The encoding of individual identity in dolphin signature whis-
tles: How much information is needed?,” PLoS ONE, vol. 8,
10 2013.

M.K. Brown and L. Rabiner, “An adaptive, ordered, graph
search technique for dynamic time warping for isolated word
recognition,” Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 30, no. 4, pp. 535-544, 1982.

BS Lee and DPW Ellis, “Noise Robust Pitch Tracking by Sub-
band Autocorrelation Classification,” Interspeech 2012, 2012.

Mahdi Esfahanian, Hanqgi Zhuang, and Nurgun Erdol, “On
contour-based classification of dolphin whistles by type,” Ap-
plied Acoustics, vol. 76, no. 0, 2014.

V. B. Deecke, J. K. B. Ford, and P. Spong, “Quantifying com-
plex patterns of bioacoustic variation: Use of a neural network
to compare killer whale (Orcinus orca) dialects,” Journal of the
Acoustical Society of America, vol. 105, no. 4, pp. 2499-2507,
1999.

K. Adi, K.E. Sonstrom, P.M. Scheifele, and M.T. Johnson,
“Unsupervised validity measures for vocalization clustering,”
in IEEE International Conference on Acoustics, Speech and
Signal Processing, 2008, pp. 4377-4380.

Xanadu Halkias and Dan Ellis, “Call detection and extraction
using Bayesian inference,” Applied Acoustics, 2006.

Thomas A. Lampert and Simon E.M. O’Keefe, “An active
contour algorithm for spectrogram track detection,” Pattern
Recognition Letters, vol. 31, no. 10, pp. 1201 — 1206, 2010.

Ari D. Shapiro and Chao Wang, “A versatile pitch tracking
algorithm: From human speech to killer whale vocalizations,”
The Journal of the Acoustical Society of America, vol. 126, no.
1, pp. 451459, 2009.

David Minnen, Charles L. Isbell, Irfan Essa, and Thad Starner,
“Detecting subdimensional motifs: An efficient algorithm for
generalized multivariate pattern discovery.,” in /CDM. 2007,
pp. 601-606, IEEE Computer Society.

Bill Chiu, Eamonn Keogh, and Stefano Lonardi, “Probabilis-
tic discovery of time series motifs,” in Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discov-
ery and data mining, New York, NY, USA, 2003, KDD *03, pp.
493-498, ACM.

Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney Cash,
and Brandon Westover, “Exact Discovery of Time Series
Motifs,” in SIAM International Conference on Data Mining.
American Statistical Association (ASA), 2009.

Yuan Li and Jessica Lin, “Approximate variable-length time
series motif discovery using grammar inference,” in Proceed-
ings of the Tenth International Workshop on Multimedia Data
Mining, New York, NY, USA, 2010, MDMKDD ’10, pp. 10:1-
10:9, ACM.

8301

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

David Minnen, Unsupervised Discovery of Activity Primitives
from Multivariate Sensor Data, Ph.D. thesis, Georgia Institute
of Technology, 2008.

Padhraic Smyth, “Clustering sequences with hidden Markov
models,” in Advances in Neural Information Processing Sys-
tems. 1997, pp. 648—-654, MIT Press.

David Minnen, Charles L. Isbell, Irfan Essa, and Thad Starner,
“Discovering multivariate motifs using subsequence density
estimation,” in In AAAI Conf. on Artificial Intelligence, 2007.

Lawrence R. Rabiner, “A tutorial on hidden Markov models
and selected applications in speech recognition,” in Proceed-
ings of the IEEE, 1989, pp. 257-286.

S.J. Young, N.H. Russell, and J.H.S Thornton, “Token pass-
ing: a simple conceptual model for connected speech recogni-
tion systems,” Tech. Rep., Cambridge University Engineering
Department, 1989.

Gideon Schwarz, “Estimating the dimension of a model,” An-
nals of Statistics, 1978.

Fred J. Damerau, “A technique for computer detection and
correction of spelling errors,” Commun. ACM, vol. 7, no. 3,
Mar. 1964.

V.I. Levenshtein, “Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals,” Soviet Physics Doklady, vol.
10, pp. 707, 1966.

Stephanie L. King, Laela S. Sayigh, Randall S. Wells, Wendi
Fellner, and Vincent M. Janik, “Vocal copying of individually
distinctive signature whistles in bottlenose dolphins,” Proceed-
ings of the Royal Society B: Biological Sciences, vol. 280, no.
1757, 2013.

Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen,
Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria,
and Eamonn Keogh, “Searching and mining trillions of time
series subsequences under dynamic time warping,” in Pro-
ceedings of the 18th ACM SIGKDD international conference
on Knowledge Discovery and Data Mining. 2012, KDD 12,
pp- 262-270, ACM.



