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Abstract

The study of dolphin cognition involves intensive research of
animal vocalizations recorded in the field. We address the auto-
mated analysis of audible dolphin communication and propose
a system that automatically discovers patterns in dolphin sig-
nals. These patterns are invariant to frequency shifts and time
warping transformations. The discovery algorithm is based on
feature learning and unsupervised time series segmentation us-
ing hidden Markov models. Researchers can inspect the pat-
terns visually and interactively run comparative statistics be-
tween the distribution of dolphin signals in different behavioral
contexts. Our results indicate that our system provides mean-
ingful patterns to the marine biologist and that the comparative
statistics are aligned with the biologists domain knowledge.

Index Terms: Pattern Discovery, Bio Acoustics, Marine Mam-
mals, Dolphin Behavior

1. Introduction
Dolphin cognition and communication research is a significant
subfield of marine mammalogy. Communication signals of an-
imal groups can give valuable insight into their social structure.
One of the goals in dolphin cognition research is the association
of social cues during group behavior with audible signaling by
correlating video with audio recordings. Therefore, researchers
collect large multimedia databases in the field containing long-
term behavioral observations. However, animal communication
research suffers from the slow speed of manual data analysis.
Often researchers search and annotate audio and video mate-
rial using manual measurements. These measurements are often
subjective and not formally defined. Finding patterns of com-
munication that relate to observable behavior without metrics
for comparison is a tedious process. The process, from data col-
lection to publication, can take several years or even decades.

We propose a feature learning algorithm and a pattern dis-
covery algorithm for audible dolphin communication. Further-
more, we use the resulting patterns to enable marine mammalo-
gists to perform statistical tests in order to reason about the dif-
ferences in dolphin communication depending on the commu-
nication’s context. The feature learning algorithm is based on
convolutional features extracted from the spectrogram and the
pattern discovery algorithm is based on hidden Markov models.
Furthermore, we describe an algorithm that learns regular ex-
pressions from pattern sequences using alignment based learn-
ing. In an experiment we show that the resulting patterns (see
Figure 1) are indeed usable by a domain expert to run statistical
tests between communication observations collected in differ-
ent contexts.

Figure 1: Multiple Patterns extracted from spectrograms during
our experiment. Each row represents one pattern. Each column
represents an example spectrogram snippet of that pattern. All
examples are color coded indicating the pattern.

2. Related Work

In a survey on underwater acoustics processing methods, Lam-
pert and O’Keefe [1] identify three main algorithm categories:
image processing, neural networks, and statistical models. They
evaluate several methods on a dolphin whistle detection task.
They conclude that hidden Markov models (HMMs) are cur-
rently the most prevalent, promising method in the research lit-
erature for use in cetacean vocalization spectrum analysis.

Kershenbaum et al. [2] measure the similarity between
whistles using the dynamic time warping distance. Whistle ex-
tractions are performed manually using a custom user interface.
Users manually follow the contour of the whistle in a spec-
trogram. However, this task can be performed automatically,
as shown by recent efforts of Baggenstoss and Kurth [3], who
compare methods for detecting burst pulses in impulse noise,
and Kohlsdorf et al. [4], who trace a dolphin whistle using a
probabilistic pitch tracker. Other approaches to whistle extrac-
tion include a frame-based Bayesian approach [5] and a Kalman
filtering approach [6]. Shapiro and Wang apply pitch detection
designed for human telephone speech to whale vocalizations
[7].

Dolphin signal clustering and classification often uses neu-
ral networks [8, 9] or clustering based on hidden Markov mod-
els [10]. Both approaches filter the data first and use Mel-
cepstral coefficients or other measurements from the spectro-
gram as features. Our goal is to improve the efficiency and effi-
cacy of analysis of clicks, whistles, and bursts [11]. We adopt an
approach similar to the work done by Zakaria et al. on mining
archives of mouse sound using symbolic representations [12].



3. Dolphin Communication Mining
Biology researchers capture audible dolphin communication in
digital field recordings. We propose a system that automatically
learns a feature representation from a spectrogram and describe
how to use hidden Markov models and hierarchical clustering
to discover short dolphin signal patterns in this novel feature
space. Furthermore, we describe an algorithm that uses align-
ments to model sequences of these patterns.

Our approach has parallels to speech recognition where
the acoustic signal is modeled, then a phoneme recognizer is
trained, and finally sequences of phonemes are modeled with
contexts and grammars. As in a speech recognition system we
begin modeling the signals in the spectrogram of the audio mea-
surements. Here we define a spectrogram as a multivariate con-
tinuous time series:

S = {s1, ...sT }, st ∈ RF (1)

Each point in the spectrogram stf represents the magnitude
of frequency f at time t of the original audio wave. We define
a signal pattern as a set of subsequences from several spectro-
grams that appear similar to each other given a distance func-
tion. Our system uses the feature learning and hidden Markov
models to convert the spectrogram into a discrete string of sig-
nal patterns:

P = {p1, ...pT }, pi ∈ P (2)

Each pattern is an element of a global pattern codebook P
shared across all sequences.

3.1. Feature Learning For Dolphin Communication

In order to enable frequency-invariant comparison of dolphin
signals, we learn a set of k feature extractors spanning a k-
dimensional feature space. Using these features, two dolphin
signals that are similar in shape but in different frequency bands
should appear close in the novel feature space under Euclidean
distance. Furthermore, the feature space should easily dis-
tinguish between dolphin signals and other underwater noise
sources.

Using these feature extractors we convert a spectrogram
S = {s1, ...sT } with F dimensions and length T into a time
series in the novel feature space S′ = {s′1, ...s′T } with k di-
mensions and length T .

The algorithm for feature learning clusters small, local re-
gions from the spectrogram using k-means [13] and transforms
a novel spectrogram into the feature space using a soft k-means
assignment. The soft k-means assignment computes a distance
of cluster regions from the spectrogram and then converts these
distances into an influence score for each cluster. The final fea-
ture space is constructed by max pooling.

We learn the feature extractors from a dataset of audio files
that are categorized into dolphin whistles, burst pulses or noise.
We transform each audio example in the catalog into its spec-
trogram representation. The main idea is to represent a feature
extractor as a square region learned from a spectrogram con-
taining a dolphin signal. Such a region is a local estimate of the
spectrogram around its center. For example, a patch centered at
a point on a dolphin whistle might capture a small part of an up
sweep in frequency. A patch centered around a different loca-
tion might capture a down sweep. Such a patch can be regarded
as a local estimate in the spectrogram. In our experiments a
patch represents approximately half a millisecond in time and
one kHz in frequency.

Given the spectrograms extracted from the catalog, we ex-
tract all patches that fall around dolphin communication. For
all whistles, we use a whistle tracer [4] and use only patches
along the whistles trace. For burst pulse like signals, we extract
interest points (a point of high magnitude that is maximal in a
local neighborhood) in the spectrogram first [14] and use only
patches around these interest points.

There will be multiple regions that contain up sweeps and
down sweeps as well as several regions containing multiple
lines as found in burst pulses. We use unsupervised feature
learning [13] to form a codebook of regions. We z-normalize
each region before proceeding [13].

We then build a codebook of these patches using k-means
clustering. The centers of 30 clusters learned from dolphin sig-
nal patches are shown in Figure 2.

Figure 2: A set of 30 feature extractors learned using k-means.

The resulting codebook represents our feature extractors.
A cluster is a square region c with length 2d and mean mu.
In order to transform a spectrogram into the new feature space
spanned by the codebook, we perform the following steps. We
place one of the clusters at a point stf in the spectrogram and
compute the distance of the region to the spectrogram area it
covers. If we shift the region over the spectrogram and replace
each spectrogram point with the distance, we get a new time
series Sc = {sc1...sct}. Each point sctf in the new sequence
represents the distance of the region c to the spectrogram around
the point stf :

sctf =

√√√√ 2d∑
i=0

2d∑
j=0

(st−i,f−j − ci+d,j+d)2 (3)

We convert the spectrogram S into the new space Sc for
each of the k clusters in the codebook. The result is a set of k
new sequences {Sc1...Sck}. Each entry in the new sequence
Sci
tf represents the distance of the spectrogram area centered at

time t and frequency f to the cluster center ci. Next we trans-
form the distance representation in a representation capturing
the response or influence of each cluster. First we compute the
mean of all k distances at every point in the spectrogram: The
influence of a cluster at a point in time t and frequency is

sctf = max(0, µtf − sctf ) (4)
Now each point sctf represents the local influence of clus-

ter c to the spectrogram at a point in time t and frequency f .



Such an assignment is also called a soft k-means assignment
[13]. Finally, we can transform the influence scores into the
new feature space by max pooling. The final feature space is
of the same duration as the original spectrogram. The dimen-
sion changes to the number of clusters. The complete process
is shown in Figure 3. As one can see on the top, we visualized
the k influence transformations for a whistle. Each point in time
and frequency shows the response of a cluster to the underlying
whistle. The bottom graphic shows the max pooling process.
At every time step the maximum response across all frequen-
cies for each cluster influence is taken as the value in the novel
feature space. The result is a k-dimensional time series. Each
dimension represents how each cluster’s influence changes over
time.

Figure 3: Mapping sequence into feature space.

The new feature space is frequency-invariant. For example,
a cluster center representing a down sweep is shifted over the
spectrogram, and the influence is computed at every point. If
we pool the responses at every point in time, the frequency at
which the maximum response occurred is not represented in the
novel feature space. The only information coded in this space
is that there was a down sweep at time t with influence s′ti.

3.2. Pattern Discovery

With the novel feature space we learned an acoustic model
for dolphin communication. In the next step, we use hidden
Markov models to build a probabilistic model of dolphin pat-
terns. In particular we present an algorithm that takes a spec-
trogram S = {s1...sT } of dolphin communication as the in-
put and outputs a discrete dolphin communication sequence
P = {p1, ...pT }.

Our goal is to learn a representation in which all patterns
as well as the underwater noise sources are modeled in a prob-
abilistic model. We learn this model in three steps. In the first
step, we convert the spectrogram S = {s1...sT } into the novel
feature space described in the previous section S′ = {s′1..s′T }.
Furthermore, we classify each sample in the sequences as dol-
phin signal or noise using a random forest [15]. Using the clas-
sification results we extract regions of consecutive samples clas-
sified as dolphin signal. We extract sliding windows from these
regions and cluster the windows into patterns. After the cluster-

ing is done, we learn a hidden Markov model for each cluster.
Furthermore, we learn a mixture of Gaussian from the samples
classified as noise. We then combine the resulting models and
the mixture into a joint hidden Markov model. The resulting
hidden Markov model can be regarded as the pattern codebook.
The model contains every pattern that can occur in each spec-
trogram. A final shared pattern codebook is responsible for the
conversion of a piece of dolphin communication in the feature
space S′ = {s′1..s′T } into a dolphin communication sequence
P = {p1..pN}.

The clustering algorithm clusters the sliding windows us-
ing agglomerative clustering under the dynamic time warping
distance. In agglomerative clustering, all windows initially rep-
resent their own cluster. In each clustering step, the algorithm
merges the two closest clusters under dynamic time warping
distance. We use the average linkage criteria as the closeness
between clusters. We proceed by learning one left-to-right hid-
den Markov model from each cluster using the Baum-Welch
algorithm. Since the maximum number of patterns will lead to
over-segmentation, we apply greedy mixture learning [4, 16].

Greedy mixture learning starts with a one-state hidden
Markov model representing the noise. The observation distribu-
tion is the mixture of Gaussians estimated from the noise sam-
ples. We then greedily add the pattern model to the mixture that
maximizes the likelihood for all data. If the increase in likeli-
hood is not sufficiently large, the algorithm returns the mixture.
Now we can decode all communication sequences in the se-
quence database using the Viterbi algorithm. By assigning each
sample to the pattern indicated by the Viterbi path, we achieve
a segmentation into patterns: P = {p1, ...pT }, pi ∈ {1...N}.

3.3. Pattern Rules

Now that we can build a probabilistic model of dolphin se-
quences, we can turn to modeling sequences of these patterns.
In particular, we describe an algorithm that learns a set of reg-
ular expressions from unlabeled dolphin signal sequences con-
verted into the pattern representation. This representation can
later be used to gather statistics about dolphin communication.

A regular expression is a sequence of symbols defining a
search pattern. For example the string ab[a−Z]∗(b|cd) defines
a search pattern in which the string “ab” is followed by a string
of any characters “[a-Z]*” with any length. Then the string ends
with either “b” or “cd”. In the following, we will describe how
to learn a set of regular expressions from a database of dolphin
communication patterns using an algorithm called “alignment-
based learning” [17]. The resulting regular expressions support
regions where no character matches and regions with an OR.

A pairwise alignment between two sequences X =
x1...xi...xN and Y = y1....yj ...yM can be achieved by a se-
ries of insertion, deletion, substitution and match errors. An
insertion error at position xi means the symbol is not present
in yi. A deletion error means the symbol is present in yi but
not xi. A substitution error means the symbol at xi is different
from the symbol at yi. A match is no error, meaning the symbol
xi and yi are the same. We use the Needlemann-Wunsh algo-
rithm to construct the alignments [18]. From the alignment, we
can retrieve the insertions, deletions and match operations. All
regions of matches are unchanged. We replace all regions of
insertions and deletions with a sequence of filler symbols of un-
defined length. In regular expression notation such a sequence
is written as [a − Z]∗. All substitutions are replaced by an OR
operator. For example, if one substitution region is “abc” in
one sequence and “def” in the other, we define that the regular



expression can match either. The regular expression notation
is (abc|def). Now we build a set of all regular expressions
from the dataset. Then, we align each sequence to each other
sequence and extract the regular expression. We add a regular
expression to the set of regular expressions if it matches more
sequences than a predefined threshold. In Figure 4 we visualize
some of the regular expressions extracted for our experiments.

Figure 4: Two rules extracted from our data set. (x|y) repre-
sents OR and ∗ represents a repetition of the previous symbol
as often as needed to match the rule.

4. Statistical Testing Experiments
We use a dataset of dolphin communication sequences to run
comparative statistics among different behavioral contexts. The
audio files provided by the domain experts are annotated with
the behavior contexts: play behavior, foraging behavior, aggres-
sive behavior and mother-calf reunions. In total, the dataset
contains 25 audio files: 7 files showing aggressive behavior,
5 files with foraging behavior, 6 files with play behavior and 7
files with data from mother-calf reunions. The domain expert
picked these contexts since the expert community has agreed
that communication in these contexts is different. For exam-
ple, foraging behavior includes mainly echolocation; aggressive
behavior includes mainly burst pulses; play behavior includes
whistles; and mother-calf reunions include signature whistles.
When comparing these contexts to each other, they should all
show a significant difference in the pattern distribution. Further-
more, when comparing a context to itself, it should not show a
significant difference. We augment the dataset with 65 unla-
beled sequences and also gather a small dataset of annotated
dolphin signals to learn the feature space.

Using the database, we learn a feature space with 60 di-
mensions. We build a random forest with 10 trees to filter the
noise as described above. We then learn a mixture of three state
left-right hidden Markov models and learn a set of regular ex-
pressions from all pattern sequences.

In order to run comparative statistics between different con-
texts, we convert each audio file in the database into its pattern
representation and then build a histogram that combines the oc-
currence count of each pattern in a context as well as the match-
ing count of each regular expression in each context. In other
words, we have one histogram for aggressive behavior, one his-
togram for foraging behavior, one for play behavior and one for
mother calf reunions.

In particular we run comparative statistics in each condition
and perform comparisons between two contexts’ histograms us-
ing a χ2 test on the histogram statistics extracted from each dol-
phin communication sequence.

When comparing data from context c1 and context c2:
1. Estimate a distribution c1, and test if c2 is from that dis-

tribution.
2. Estimate a distribution c2, and test if c1 is from that dis-

tribution.
The method returns two p-values, one for each case. These

p-values are used to indicate the significant difference between

the communication in each context. At this point in the data
mining pipeline, the audible communication is described by a
distribution estimated from the discovered patterns. In other
words, the p-values indicate significant differences in commu-
nication among different contexts indirectly through the esti-
mated pattern distributions. In our experiments, we use a 0.95
confidence interval.

Table 1: The p-values for the statistical testing experiment us-
ing the combined dataset. Significant p-values after correction
are shown in green. Non-significant values are shown in blue.
Values that are non-significant after Bonferroni correction are
shown in yellow.

aggression play foraging reunion
aggression 0.51 7.48e−11 0.02 1.45e−13

play < e−14 0.79 1.46e−7 0.01
foraging < e−14 < e−14 0.98 1.63e−7

reunion 3.00e−9 2.58e−4 < e−14 0.84
.

When comparing data from a context to itself, we split the
data into two equally sized subsets and run the tests between
the two and repeat the testing process 10 times and average the
resulting p-values

It is worth mentioning that the system is trained on a larger
portion of the data then used for the statistical analysis. The
pattern sequences and hidden Markov models are all estimated
using all the data combined, the unlabeled sequences as well as
the annotated sequences with the context labels. We chose to
follow this route, since we observed unstable model estimates
when using small datasets. The numerics as well as the model’s
quality with respect to the statistical testing improved with more
data.

5. Discussion
As one can see in Table 1, we observe non significant values
along the diagonal of our testing matrix and significant values
in close to all fields. In other words, there is no observable
difference when comparing a context to itself; the pattern dis-
tribution is similar within a context. Furthermore, we observe
noticeable differences in the off diagonal fields which indicates
that the pattern distribution is not similar across contexts. For
example, we observe a statistical difference of communication
between aggression and mother calf reunions. However, there
is no difference when comparing different sets of audio files
containing aggressive behavior. These results indicate that the
acoustic patterns found match the visual distinctions made by
biologists when defining these categories.

6. Conclusion
We presented an algorithm that uses feature learning, hidden
Markov models and alignment based learning to produce mod-
els of dolphin communication patterns sequences. Furthermore,
in an experiment we presented results that indicate that the
learned models can be used to run quantitative experiments us-
ing statistical testing. These models can help biologists in the
future, to quickly produce models of dolphin communication
that can be used to validate hypothesis about dolphin communi-
cation and behavior in different social contexts.
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